Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(2x)=sin(x-pi/4)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(2x)=sin(x−4π​)

Solution

x=4π​+πn,x=2πn+1211π​,x=2πn+1219π​
+1
Degrees
x=45∘+180∘n,x=165∘+360∘n,x=285∘+360∘n
Solution steps
cos(2x)=sin(x−4π​)
Rewrite using trig identities
cos(2x)=sin(x−4π​)
Rewrite using trig identities
sin(x−4π​)
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(x)cos(4π​)−cos(x)sin(4π​)
Simplify sin(x)cos(4π​)−cos(x)sin(4π​):22​sin(x)−2​cos(x)​
sin(x)cos(4π​)−cos(x)sin(4π​)
sin(x)cos(4π​)=22​sin(x)​
sin(x)cos(4π​)
Simplify cos(4π​):22​​
cos(4π​)
Use the following trivial identity:cos(4π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
cos(x)sin(4π​)=22​cos(x)​
cos(x)sin(4π​)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​sin(x)​−22​cos(x)​
Apply rule ca​±cb​=ca±b​=22​sin(x)−2​cos(x)​
=22​sin(x)−2​cos(x)​
cos(2x)=22​sin(x)−2​cos(x)​
Simplify 22​sin(x)−2​cos(x)​:2​sin(x)−cos(x)​
22​sin(x)−2​cos(x)​
Factor out common term 2​=22​(sin(x)−cos(x))​
Cancel 22​(sin(x)−cos(x))​:2​sin(x)−cos(x)​
22​(sin(x)−cos(x))​
Apply radical rule: 2​=221​=2221​(sin(x)−cos(x))​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=21−21​sin(x)−cos(x)​
Subtract the numbers: 1−21​=21​=221​sin(x)−cos(x)​
Apply radical rule: 221​=2​=2​sin(x)−cos(x)​
=2​sin(x)−cos(x)​
cos(2x)=2​sin(x)−cos(x)​
cos(2x)=2​sin(x)−cos(x)​
Subtract 2​sin(x)−cos(x)​ from both sidescos(2x)−2​sin(x)−cos(x)​=0
Simplify cos(2x)−2​sin(x)−cos(x)​:2​2​cos(2x)−sin(x)+cos(x)​
cos(2x)−2​sin(x)−cos(x)​
Convert element to fraction: cos(2x)=2​cos(2x)2​​=2​cos(2x)2​​−2​sin(x)−cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​cos(2x)2​−(sin(x)−cos(x))​
Expand cos(2x)2​−(sin(x)−cos(x)):cos(2x)2​−sin(x)+cos(x)
cos(2x)2​−(sin(x)−cos(x))
=2​cos(2x)−(sin(x)−cos(x))
−(sin(x)−cos(x)):−sin(x)+cos(x)
−(sin(x)−cos(x))
Distribute parentheses=−(sin(x))−(−cos(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−sin(x)+cos(x)
=cos(2x)2​−sin(x)+cos(x)
=2​2​cos(2x)−sin(x)+cos(x)​
2​2​cos(2x)−sin(x)+cos(x)​=0
g(x)f(x)​=0⇒f(x)=02​cos(2x)−sin(x)+cos(x)=0
Rewrite using trig identities
cos(x)−sin(x)+cos(2x)2​
Use the Double Angle identity: cos(2x)=cos2(x)−sin2(x)=cos(x)−sin(x)+2​(cos2(x)−sin2(x))
cos(x)−sin(x)+(cos2(x)−sin2(x))2​=0
Factor cos(x)−sin(x)+(cos2(x)−sin2(x))2​:(cos(x)−sin(x))(2​(cos(x)+sin(x))+1)
cos(x)−sin(x)+(cos2(x)−sin2(x))2​
Factor cos2(x)−sin2(x):(cos(x)+sin(x))(cos(x)−sin(x))
cos2(x)−sin2(x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)cos2(x)−sin2(x)=(cos(x)+sin(x))(cos(x)−sin(x))=(cos(x)+sin(x))(cos(x)−sin(x))
=cos(x)−sin(x)+2​(cos(x)+sin(x))(cos(x)−sin(x))
Rewrite as=(cos(x)−sin(x))(cos(x)+sin(x))2​+1⋅(cos(x)−sin(x))
Factor out common term (cos(x)−sin(x))=(cos(x)−sin(x))((cos(x)+sin(x))2​+1)
(cos(x)−sin(x))(2​(cos(x)+sin(x))+1)=0
Solving each part separatelycos(x)−sin(x)=0or2​(cos(x)+sin(x))+1=0
cos(x)−sin(x)=0:x=4π​+πn
cos(x)−sin(x)=0
Rewrite using trig identities
cos(x)−sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)cos(x)−sin(x)​=cos(x)0​
Simplify1−cos(x)sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)1−tan(x)=0
1−tan(x)=0
Move 1to the right side
1−tan(x)=0
Subtract 1 from both sides1−tan(x)−1=0−1
Simplify−tan(x)=−1
−tan(x)=−1
Divide both sides by −1
−tan(x)=−1
Divide both sides by −1−1−tan(x)​=−1−1​
Simplifytan(x)=1
tan(x)=1
General solutions for tan(x)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=4π​+πn
x=4π​+πn
2​(cos(x)+sin(x))+1=0:x=2πn+1211π​,x=2πn+1219π​
2​(cos(x)+sin(x))+1=0
Rewrite using trig identities
2​(cos(x)+sin(x))+1
sin(x)+cos(x)=2​sin(x+4π​)
sin(x)+cos(x)
Rewrite as=2​(2​1​sin(x)+2​1​cos(x))
Use the following trivial identity: cos(4π​)=2​1​Use the following trivial identity: sin(4π​)=2​1​=2​(cos(4π​)sin(x)+sin(4π​)cos(x))
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=2​sin(x+4π​)
=1+2​2​sin(x+4π​)
1+2​2​sin(x+4π​)=0
Apply radical rule: a​a​=a2​2​=21+2sin(x+4π​)=0
Move 1to the right side
1+2sin(x+4π​)=0
Subtract 1 from both sides1+2sin(x+4π​)−1=0−1
Simplify2sin(x+4π​)=−1
2sin(x+4π​)=−1
Divide both sides by 2
2sin(x+4π​)=−1
Divide both sides by 222sin(x+4π​)​=2−1​
Simplifysin(x+4π​)=−21​
sin(x+4π​)=−21​
General solutions for sin(x+4π​)=−21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x+4π​=67π​+2πn,x+4π​=611π​+2πn
x+4π​=67π​+2πn,x+4π​=611π​+2πn
Solve x+4π​=67π​+2πn:x=2πn+1211π​
x+4π​=67π​+2πn
Move 4π​to the right side
x+4π​=67π​+2πn
Subtract 4π​ from both sidesx+4π​−4π​=67π​+2πn−4π​
Simplify
x+4π​−4π​=67π​+2πn−4π​
Simplify x+4π​−4π​:x
x+4π​−4π​
Add similar elements: 4π​−4π​=0
=x
Simplify 67π​+2πn−4π​:2πn+1211π​
67π​+2πn−4π​
Group like terms=2πn−4π​+67π​
Least Common Multiplier of 4,6:12
4,6
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 6=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 67π​:multiply the denominator and numerator by 267π​=6⋅27π2​=1214π​
=−12π3​+1214π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π3+14π​
Add similar elements: −3π+14π=11π=2πn+1211π​
x=2πn+1211π​
x=2πn+1211π​
x=2πn+1211π​
Solve x+4π​=611π​+2πn:x=2πn+1219π​
x+4π​=611π​+2πn
Move 4π​to the right side
x+4π​=611π​+2πn
Subtract 4π​ from both sidesx+4π​−4π​=611π​+2πn−4π​
Simplify
x+4π​−4π​=611π​+2πn−4π​
Simplify x+4π​−4π​:x
x+4π​−4π​
Add similar elements: 4π​−4π​=0
=x
Simplify 611π​+2πn−4π​:2πn+1219π​
611π​+2πn−4π​
Group like terms=2πn−4π​+611π​
Least Common Multiplier of 4,6:12
4,6
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 6=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 611π​:multiply the denominator and numerator by 2611π​=6⋅211π2​=1222π​
=−12π3​+1222π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π3+22π​
Add similar elements: −3π+22π=19π=2πn+1219π​
x=2πn+1219π​
x=2πn+1219π​
x=2πn+1219π​
x=2πn+1211π​,x=2πn+1219π​
Combine all the solutionsx=4π​+πn,x=2πn+1211π​,x=2πn+1219π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(2x+60)+sin(x+30)=0,0<= x<= 2pi2sin^2(u)=1+sin(u)cos(x)= 9/17-6sin(c)+0=sin(c)-3tan(x)= 11/12

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(2x)=sin(x-pi/4) ?

    The general solution for cos(2x)=sin(x-pi/4) is x= pi/4+pin,x=2pin+(11pi)/(12),x=2pin+(19pi)/(12)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024