Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1-cos(θ)=sin(θ/2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1−cos(θ)=sin(2θ​)

Solution

θ=3π​+4πn,θ=35π​+4πn,θ=4πn,θ=2π+4πn
+1
Degrees
θ=60∘+720∘n,θ=300∘+720∘n,θ=0∘+720∘n,θ=360∘+720∘n
Solution steps
1−cos(θ)=sin(2θ​)
Subtract sin(2θ​) from both sides1−cos(θ)−sin(2θ​)=0
Let: u=2θ​1−cos(2u)−sin(u)=0
Rewrite using trig identities
1−cos(2u)−sin(u)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=1−(1−2sin2(u))−sin(u)
Simplify 1−(1−2sin2(u))−sin(u):2sin2(u)−sin(u)
1−(1−2sin2(u))−sin(u)
−(1−2sin2(u)):−1+2sin2(u)
−(1−2sin2(u))
Distribute parentheses=−(1)−(−2sin2(u))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+2sin2(u)
=1−1+2sin2(u)−sin(u)
1−1=0=2sin2(u)−sin(u)
=2sin2(u)−sin(u)
−sin(u)+2sin2(u)=0
Solve by substitution
−sin(u)+2sin2(u)=0
Let: sin(u)=u−u+2u2=0
−u+2u2=0:u=21​,u=0
−u+2u2=0
Write in the standard form ax2+bx+c=02u2−u=0
Solve with the quadratic formula
2u2−u=0
Quadratic Equation Formula:
For a=2,b=−1,c=0u1,2​=2⋅2−(−1)±(−1)2−4⋅2⋅0​​
u1,2​=2⋅2−(−1)±(−1)2−4⋅2⋅0​​
(−1)2−4⋅2⋅0​=1
(−1)2−4⋅2⋅0​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅2⋅0=0
4⋅2⋅0
Apply rule 0⋅a=0=0
=1−0​
Subtract the numbers: 1−0=1=1​
Apply rule 1​=1=1
u1,2​=2⋅2−(−1)±1​
Separate the solutionsu1​=2⋅2−(−1)+1​,u2​=2⋅2−(−1)−1​
u=2⋅2−(−1)+1​:21​
2⋅2−(−1)+1​
Apply rule −(−a)=a=2⋅21+1​
Add the numbers: 1+1=2=2⋅22​
Multiply the numbers: 2⋅2=4=42​
Cancel the common factor: 2=21​
u=2⋅2−(−1)−1​:0
2⋅2−(−1)−1​
Apply rule −(−a)=a=2⋅21−1​
Subtract the numbers: 1−1=0=2⋅20​
Multiply the numbers: 2⋅2=4=40​
Apply rule a0​=0,a=0=0
The solutions to the quadratic equation are:u=21​,u=0
Substitute back u=sin(u)sin(u)=21​,sin(u)=0
sin(u)=21​,sin(u)=0
sin(u)=21​:u=6π​+2πn,u=65π​+2πn
sin(u)=21​
General solutions for sin(u)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
u=6π​+2πn,u=65π​+2πn
u=6π​+2πn,u=65π​+2πn
sin(u)=0:u=2πn,u=π+2πn
sin(u)=0
General solutions for sin(u)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
u=0+2πn,u=π+2πn
u=0+2πn,u=π+2πn
Solve u=0+2πn:u=2πn
u=0+2πn
0+2πn=2πnu=2πn
u=2πn,u=π+2πn
Combine all the solutionsu=6π​+2πn,u=65π​+2πn,u=2πn,u=π+2πn
Substitute back u=2θ​
2θ​=6π​+2πn:θ=3π​+4πn
2θ​=6π​+2πn
Multiply both sides by 2
2θ​=6π​+2πn
Multiply both sides by 222θ​=2⋅6π​+2⋅2πn
Simplify
22θ​=2⋅6π​+2⋅2πn
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2⋅6π​+2⋅2πn:3π​+4πn
2⋅6π​+2⋅2πn
2⋅6π​=3π​
2⋅6π​
Multiply fractions: a⋅cb​=ca⋅b​=6π2​
Cancel the common factor: 2=3π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=3π​+4πn
θ=3π​+4πn
θ=3π​+4πn
θ=3π​+4πn
2θ​=65π​+2πn:θ=35π​+4πn
2θ​=65π​+2πn
Multiply both sides by 2
2θ​=65π​+2πn
Multiply both sides by 222θ​=2⋅65π​+2⋅2πn
Simplify
22θ​=2⋅65π​+2⋅2πn
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2⋅65π​+2⋅2πn:35π​+4πn
2⋅65π​+2⋅2πn
2⋅65π​=35π​
2⋅65π​
Multiply fractions: a⋅cb​=ca⋅b​=65π2​
Multiply the numbers: 5⋅2=10=610π​
Cancel the common factor: 2=35π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=35π​+4πn
θ=35π​+4πn
θ=35π​+4πn
θ=35π​+4πn
2θ​=2πn:θ=4πn
2θ​=2πn
Multiply both sides by 2
2θ​=2πn
Multiply both sides by 222θ​=2⋅2πn
Simplifyθ=4πn
θ=4πn
2θ​=π+2πn:θ=2π+4πn
2θ​=π+2πn
Multiply both sides by 2
2θ​=π+2πn
Multiply both sides by 222θ​=2π+2⋅2πn
Simplifyθ=2π+4πn
θ=2π+4πn
θ=3π​+4πn,θ=35π​+4πn,θ=4πn,θ=2π+4πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x+pi)+sin(x-pi)=0cos(y)-sin(y)=0sin(2x)=cos(4x)sec^2(x)=4tan^2(x)5sin(x)=-4

Frequently Asked Questions (FAQ)

  • What is the general solution for 1-cos(θ)=sin(θ/2) ?

    The general solution for 1-cos(θ)=sin(θ/2) is θ= pi/3+4pin,θ=(5pi)/3+4pin,θ=4pin,θ=2pi+4pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024