Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^4(x/3)+cos^4(x/3)= 5/8

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin4(3x​)+cos4(3x​)=85​

Solution

x=2π​+6πn,x=211π​+6πn,x=25π​+6πn,x=27π​+6πn,x=π+6πn,x=5π+6πn,x=2π+6πn,x=4π+6πn
+1
Degrees
x=90∘+1080∘n,x=990∘+1080∘n,x=450∘+1080∘n,x=630∘+1080∘n,x=180∘+1080∘n,x=900∘+1080∘n,x=360∘+1080∘n,x=720∘+1080∘n
Solution steps
sin4(3x​)+cos4(3x​)=85​
Subtract 85​ from both sidessin4(3x​)+cos4(3x​)−85​=0
Simplify sin4(3x​)+cos4(3x​)−85​:88sin4(3x​)+8cos4(3x​)−5​
sin4(3x​)+cos4(3x​)−85​
Convert element to fraction: sin4(3x​)=8sin4(3x​)8​,cos4(3x​)=8cos4(3x​)8​=8sin4(3x​)⋅8​+8cos4(3x​)⋅8​−85​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=8sin4(3x​)⋅8+cos4(3x​)⋅8−5​
88sin4(3x​)+8cos4(3x​)−5​=0
g(x)f(x)​=0⇒f(x)=08sin4(3x​)+8cos4(3x​)−5=0
Let: u=3x​8sin4(u)+8cos4(u)−5=0
Apply exponent rule: ab=a2ab−2−5+8cos4(u)+8sin2(u)sin2(u)=0
Rewrite using trig identities
−5+8cos4(u)+8sin2(u)sin2(u)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−5+8cos4(u)+8(1−cos2(u))(1−cos2(u))
Simplify −5+8cos4(u)+8(1−cos2(u))(1−cos2(u)):16cos4(u)−16cos2(u)+3
−5+8cos4(u)+8(1−cos2(u))(1−cos2(u))
8(1−cos2(u))(1−cos2(u))=8(1−cos2(u))2
8(1−cos2(u))(1−cos2(u))
Apply exponent rule: ab⋅ac=ab+c(1−cos2(u))(1−cos2(u))=(1−cos2(u))1+1=8(1−cos2(u))1+1
Add the numbers: 1+1=2=8(1−cos2(u))2
=−5+8cos4(u)+8(−cos2(u)+1)2
(1−cos2(u))2:1−2cos2(u)+cos4(u)
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=1,b=cos2(u)
=12−2⋅1⋅cos2(u)+(cos2(u))2
Simplify 12−2⋅1⋅cos2(u)+(cos2(u))2:1−2cos2(u)+cos4(u)
12−2⋅1⋅cos2(u)+(cos2(u))2
Apply rule 1a=112=1=1−2⋅1⋅cos2(u)+(cos2(u))2
2⋅1⋅cos2(u)=2cos2(u)
2⋅1⋅cos2(u)
Multiply the numbers: 2⋅1=2=2cos2(u)
(cos2(u))2=cos4(u)
(cos2(u))2
Apply exponent rule: (ab)c=abc=cos2⋅2(u)
Multiply the numbers: 2⋅2=4=cos4(u)
=1−2cos2(u)+cos4(u)
=1−2cos2(u)+cos4(u)
=−5+8cos4(u)+8(1−2cos2(u)+cos4(u))
Expand 8(1−2cos2(u)+cos4(u)):8−16cos2(u)+8cos4(u)
8(1−2cos2(u)+cos4(u))
Distribute parentheses=8⋅1+8(−2cos2(u))+8cos4(u)
Apply minus-plus rules+(−a)=−a=8⋅1−8⋅2cos2(u)+8cos4(u)
Simplify 8⋅1−8⋅2cos2(u)+8cos4(u):8−16cos2(u)+8cos4(u)
8⋅1−8⋅2cos2(u)+8cos4(u)
Multiply the numbers: 8⋅1=8=8−8⋅2cos2(u)+8cos4(u)
Multiply the numbers: 8⋅2=16=8−16cos2(u)+8cos4(u)
=8−16cos2(u)+8cos4(u)
=−5+8cos4(u)+8−16cos2(u)+8cos4(u)
Simplify −5+8cos4(u)+8−16cos2(u)+8cos4(u):16cos4(u)−16cos2(u)+3
−5+8cos4(u)+8−16cos2(u)+8cos4(u)
Group like terms=8cos4(u)−16cos2(u)+8cos4(u)−5+8
Add similar elements: 8cos4(u)+8cos4(u)=16cos4(u)=16cos4(u)−16cos2(u)−5+8
Add/Subtract the numbers: −5+8=3=16cos4(u)−16cos2(u)+3
=16cos4(u)−16cos2(u)+3
=16cos4(u)−16cos2(u)+3
3−16cos2(u)+16cos4(u)=0
Solve by substitution
3−16cos2(u)+16cos4(u)=0
Let: cos(u)=u3−16u2+16u4=0
3−16u2+16u4=0:u=23​​,u=−23​​,u=21​,u=−21​
3−16u2+16u4=0
Write in the standard form an​xn+…+a1​x+a0​=016u4−16u2+3=0
Rewrite the equation with v=u2 and v2=u416v2−16v+3=0
Solve 16v2−16v+3=0:v=43​,v=41​
16v2−16v+3=0
Solve with the quadratic formula
16v2−16v+3=0
Quadratic Equation Formula:
For a=16,b=−16,c=3v1,2​=2⋅16−(−16)±(−16)2−4⋅16⋅3​​
v1,2​=2⋅16−(−16)±(−16)2−4⋅16⋅3​​
(−16)2−4⋅16⋅3​=8
(−16)2−4⋅16⋅3​
Apply exponent rule: (−a)n=an,if n is even(−16)2=162=162−4⋅16⋅3​
Multiply the numbers: 4⋅16⋅3=192=162−192​
162=256=256−192​
Subtract the numbers: 256−192=64=64​
Factor the number: 64=82=82​
Apply radical rule: 82​=8=8
v1,2​=2⋅16−(−16)±8​
Separate the solutionsv1​=2⋅16−(−16)+8​,v2​=2⋅16−(−16)−8​
v=2⋅16−(−16)+8​:43​
2⋅16−(−16)+8​
Apply rule −(−a)=a=2⋅1616+8​
Add the numbers: 16+8=24=2⋅1624​
Multiply the numbers: 2⋅16=32=3224​
Cancel the common factor: 8=43​
v=2⋅16−(−16)−8​:41​
2⋅16−(−16)−8​
Apply rule −(−a)=a=2⋅1616−8​
Subtract the numbers: 16−8=8=2⋅168​
Multiply the numbers: 2⋅16=32=328​
Cancel the common factor: 8=41​
The solutions to the quadratic equation are:v=43​,v=41​
v=43​,v=41​
Substitute back v=u2,solve for u
Solve u2=43​:u=23​​,u=−23​​
u2=43​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=43​​,u=−43​​
43​​=23​​
43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
−43​​=−23​​
−43​​
Simplify 43​​:23​​
43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
=−23​​
u=23​​,u=−23​​
Solve u2=41​:u=21​,u=−21​
u2=41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=41​​,u=−41​​
41​​=21​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
−41​​=−21​
−41​​
Simplify 41​​:21​​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
=−21​​
Apply rule 1​=1=−21​
u=21​,u=−21​
The solutions are
u=23​​,u=−23​​,u=21​,u=−21​
Substitute back u=cos(u)cos(u)=23​​,cos(u)=−23​​,cos(u)=21​,cos(u)=−21​
cos(u)=23​​,cos(u)=−23​​,cos(u)=21​,cos(u)=−21​
cos(u)=23​​:u=6π​+2πn,u=611π​+2πn
cos(u)=23​​
General solutions for cos(u)=23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
u=6π​+2πn,u=611π​+2πn
u=6π​+2πn,u=611π​+2πn
cos(u)=−23​​:u=65π​+2πn,u=67π​+2πn
cos(u)=−23​​
General solutions for cos(u)=−23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
u=65π​+2πn,u=67π​+2πn
u=65π​+2πn,u=67π​+2πn
cos(u)=21​:u=3π​+2πn,u=35π​+2πn
cos(u)=21​
General solutions for cos(u)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
u=3π​+2πn,u=35π​+2πn
u=3π​+2πn,u=35π​+2πn
cos(u)=−21​:u=32π​+2πn,u=34π​+2πn
cos(u)=−21​
General solutions for cos(u)=−21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
u=32π​+2πn,u=34π​+2πn
u=32π​+2πn,u=34π​+2πn
Combine all the solutionsu=6π​+2πn,u=611π​+2πn,u=65π​+2πn,u=67π​+2πn,u=3π​+2πn,u=35π​+2πn,u=32π​+2πn,u=34π​+2πn
Substitute back u=3x​
3x​=6π​+2πn:x=2π​+6πn
3x​=6π​+2πn
Multiply both sides by 3
3x​=6π​+2πn
Multiply both sides by 333x​=3⋅6π​+3⋅2πn
Simplify
33x​=3⋅6π​+3⋅2πn
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3⋅6π​+3⋅2πn:2π​+6πn
3⋅6π​+3⋅2πn
3⋅6π​=2π​
3⋅6π​
Multiply fractions: a⋅cb​=ca⋅b​=6π3​
Cancel the common factor: 3=2π​
3⋅2πn=6πn
3⋅2πn
Multiply the numbers: 3⋅2=6=6πn
=2π​+6πn
x=2π​+6πn
x=2π​+6πn
x=2π​+6πn
3x​=611π​+2πn:x=211π​+6πn
3x​=611π​+2πn
Multiply both sides by 3
3x​=611π​+2πn
Multiply both sides by 333x​=3⋅611π​+3⋅2πn
Simplify
33x​=3⋅611π​+3⋅2πn
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3⋅611π​+3⋅2πn:211π​+6πn
3⋅611π​+3⋅2πn
3⋅611π​=211π​
3⋅611π​
Multiply fractions: a⋅cb​=ca⋅b​=611π3​
Multiply the numbers: 11⋅3=33=633π​
Cancel the common factor: 3=211π​
3⋅2πn=6πn
3⋅2πn
Multiply the numbers: 3⋅2=6=6πn
=211π​+6πn
x=211π​+6πn
x=211π​+6πn
x=211π​+6πn
3x​=65π​+2πn:x=25π​+6πn
3x​=65π​+2πn
Multiply both sides by 3
3x​=65π​+2πn
Multiply both sides by 333x​=3⋅65π​+3⋅2πn
Simplify
33x​=3⋅65π​+3⋅2πn
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3⋅65π​+3⋅2πn:25π​+6πn
3⋅65π​+3⋅2πn
3⋅65π​=25π​
3⋅65π​
Multiply fractions: a⋅cb​=ca⋅b​=65π3​
Multiply the numbers: 5⋅3=15=615π​
Cancel the common factor: 3=25π​
3⋅2πn=6πn
3⋅2πn
Multiply the numbers: 3⋅2=6=6πn
=25π​+6πn
x=25π​+6πn
x=25π​+6πn
x=25π​+6πn
3x​=67π​+2πn:x=27π​+6πn
3x​=67π​+2πn
Multiply both sides by 3
3x​=67π​+2πn
Multiply both sides by 333x​=3⋅67π​+3⋅2πn
Simplify
33x​=3⋅67π​+3⋅2πn
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3⋅67π​+3⋅2πn:27π​+6πn
3⋅67π​+3⋅2πn
3⋅67π​=27π​
3⋅67π​
Multiply fractions: a⋅cb​=ca⋅b​=67π3​
Multiply the numbers: 7⋅3=21=621π​
Cancel the common factor: 3=27π​
3⋅2πn=6πn
3⋅2πn
Multiply the numbers: 3⋅2=6=6πn
=27π​+6πn
x=27π​+6πn
x=27π​+6πn
x=27π​+6πn
3x​=3π​+2πn:x=π+6πn
3x​=3π​+2πn
Multiply both sides by 3
3x​=3π​+2πn
Multiply both sides by 333x​=3⋅3π​+3⋅2πn
Simplify
33x​=3⋅3π​+3⋅2πn
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3⋅3π​+3⋅2πn:π+6πn
3⋅3π​+3⋅2πn
3⋅3π​=π
3⋅3π​
Multiply fractions: a⋅cb​=ca⋅b​=3π3​
Cancel the common factor: 3=π
3⋅2πn=6πn
3⋅2πn
Multiply the numbers: 3⋅2=6=6πn
=π+6πn
x=π+6πn
x=π+6πn
x=π+6πn
3x​=35π​+2πn:x=5π+6πn
3x​=35π​+2πn
Multiply both sides by 3
3x​=35π​+2πn
Multiply both sides by 333x​=3⋅35π​+3⋅2πn
Simplify
33x​=3⋅35π​+3⋅2πn
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3⋅35π​+3⋅2πn:5π+6πn
3⋅35π​+3⋅2πn
3⋅35π​=5π
3⋅35π​
Multiply fractions: a⋅cb​=ca⋅b​=35π3​
Cancel the common factor: 3=5π
3⋅2πn=6πn
3⋅2πn
Multiply the numbers: 3⋅2=6=6πn
=5π+6πn
x=5π+6πn
x=5π+6πn
x=5π+6πn
3x​=32π​+2πn:x=2π+6πn
3x​=32π​+2πn
Multiply both sides by 3
3x​=32π​+2πn
Multiply both sides by 333x​=3⋅32π​+3⋅2πn
Simplify
33x​=3⋅32π​+3⋅2πn
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3⋅32π​+3⋅2πn:2π+6πn
3⋅32π​+3⋅2πn
3⋅32π​=2π
3⋅32π​
Multiply fractions: a⋅cb​=ca⋅b​=32π3​
Cancel the common factor: 3=2π
3⋅2πn=6πn
3⋅2πn
Multiply the numbers: 3⋅2=6=6πn
=2π+6πn
x=2π+6πn
x=2π+6πn
x=2π+6πn
3x​=34π​+2πn:x=4π+6πn
3x​=34π​+2πn
Multiply both sides by 3
3x​=34π​+2πn
Multiply both sides by 333x​=3⋅34π​+3⋅2πn
Simplify
33x​=3⋅34π​+3⋅2πn
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3⋅34π​+3⋅2πn:4π+6πn
3⋅34π​+3⋅2πn
3⋅34π​=4π
3⋅34π​
Multiply fractions: a⋅cb​=ca⋅b​=34π3​
Cancel the common factor: 3=4π
3⋅2πn=6πn
3⋅2πn
Multiply the numbers: 3⋅2=6=6πn
=4π+6πn
x=4π+6πn
x=4π+6πn
x=4π+6πn
x=2π​+6πn,x=211π​+6πn,x=25π​+6πn,x=27π​+6πn,x=π+6πn,x=5π+6πn,x=2π+6πn,x=4π+6πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-2sin(x)=1sec(x)cot(x)=-2-csc(x)=1sin(θ)=-(sqrt(7))/4tan(x)= 1/1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024