Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(3x-pi/6)=-cos(3x-pi/6)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(3x−6π​)=−cos(3x−6π​)

Solution

x=3−0.26179…​+3πn​
+1
Degrees
x=−5∘+60∘n
Solution steps
sin(3x−6π​)=−cos(3x−6π​)
Rewrite using trig identities
sin(3x−6π​)=−cos(3x−6π​)
Rewrite using trig identities
sin(3x−6π​)
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(3x)cos(6π​)−cos(3x)sin(6π​)
Simplify sin(3x)cos(6π​)−cos(3x)sin(6π​):23​​sin(3x)−21​cos(3x)
sin(3x)cos(6π​)−cos(3x)sin(6π​)
Simplify cos(6π​):23​​
cos(6π​)
Use the following trivial identity:cos(6π​)=23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
=23​​sin(3x)−sin(6π​)cos(3x)
Simplify sin(6π​):21​
sin(6π​)
Use the following trivial identity:sin(6π​)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=23​​sin(3x)−21​cos(3x)
=23​​sin(3x)−21​cos(3x)
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(3x)cos(6π​)+sin(3x)sin(6π​)
Simplify cos(3x)cos(6π​)+sin(3x)sin(6π​):23​​cos(3x)+21​sin(3x)
cos(3x)cos(6π​)+sin(3x)sin(6π​)
Simplify cos(6π​):23​​
cos(6π​)
Use the following trivial identity:cos(6π​)=23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
=23​​cos(3x)+sin(6π​)sin(3x)
Simplify sin(6π​):21​
sin(6π​)
Use the following trivial identity:sin(6π​)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=23​​cos(3x)+21​sin(3x)
=23​​cos(3x)+21​sin(3x)
23​​sin(3x)−21​cos(3x)=−(23​​cos(3x)+21​sin(3x))
Simplify −(23​​cos(3x)+21​sin(3x)):−23​​cos(3x)−21​sin(3x)
−(23​​cos(3x)+21​sin(3x))
Distribute parentheses=−(23​​cos(3x))−(21​sin(3x))
Apply minus-plus rules+(−a)=−a=−23​​cos(3x)−21​sin(3x)
23​​sin(3x)−21​cos(3x)=−23​​cos(3x)−21​sin(3x)
23​​sin(3x)−21​cos(3x)=−23​​cos(3x)−21​sin(3x)
Subtract −23​​cos(3x)−21​sin(3x) from both sides2−1+3​​cos(3x)+21+3​​sin(3x)=0
Simplify 2−1+3​​cos(3x)+21+3​​sin(3x):2(−1+3​)cos(3x)+(1+3​)sin(3x)​
2−1+3​​cos(3x)+21+3​​sin(3x)
Multiply 2−1+3​​cos(3x):2(3​−1)cos(3x)​
2−1+3​​cos(3x)
Multiply fractions: a⋅cb​=ca⋅b​=2(−1+3​)cos(3x)​
=2(3​−1)cos(3x)​+21+3​​sin(3x)
Multiply 21+3​​sin(3x):2(1+3​)sin(3x)​
21+3​​sin(3x)
Multiply fractions: a⋅cb​=ca⋅b​=2(1+3​)sin(3x)​
=2(3​−1)cos(3x)​+2(1+3​)sin(3x)​
Apply rule ca​±cb​=ca±b​=2(3​−1)cos(3x)+(1+3​)sin(3x)​
2(−1+3​)cos(3x)+(1+3​)sin(3x)​=0
g(x)f(x)​=0⇒f(x)=0(−1+3​)cos(3x)+(1+3​)sin(3x)=0
Rewrite using trig identities
(−1+3​)cos(3x)+(1+3​)sin(3x)=0
Divide both sides by cos(3x),cos(3x)=0cos(3x)(−1+3​)cos(3x)+(1+3​)sin(3x)​=cos(3x)0​
Simplify−1+3​+cos(3x)sin(3x)​+cos(3x)3​sin(3x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)−1+3​+(1+3​)tan(3x)=0
−1+3​+(1+3​)tan(3x)=0
Move 1to the right side
−1+3​+(1+3​)tan(3x)=0
Add 1 to both sides−1+3​+(1+3​)tan(3x)+1=0+1
Simplify3​+(1+3​)tan(3x)=1
3​+(1+3​)tan(3x)=1
Move 3​to the right side
3​+(1+3​)tan(3x)=1
Subtract 3​ from both sides3​+(1+3​)tan(3x)−3​=1−3​
Simplify(1+3​)tan(3x)=1−3​
(1+3​)tan(3x)=1−3​
Divide both sides by 1+3​
(1+3​)tan(3x)=1−3​
Divide both sides by 1+3​1+3​(1+3​)tan(3x)​=1+3​1​−1+3​3​​
Simplify
1+3​(1+3​)tan(3x)​=1+3​1​−1+3​3​​
Simplify 1+3​(1+3​)tan(3x)​:tan(3x)
1+3​(1+3​)tan(3x)​
Cancel the common factor: 1+3​=tan(3x)
Simplify 1+3​1​−1+3​3​​:−2+3​
1+3​1​−1+3​3​​
Apply rule ca​±cb​=ca±b​=1+3​1−3​​
Multiply by the conjugate 1−3​1−3​​=(1+3​)(1−3​)(1−3​)(1−3​)​
(1−3​)(1−3​)=4−23​
(1−3​)(1−3​)
Apply exponent rule: ab⋅ac=ab+c(1−3​)(1−3​)=(1−3​)1+1=(1−3​)1+1
Add the numbers: 1+1=2=(1−3​)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=1,b=3​
=12−2⋅1⋅3​+(3​)2
Simplify 12−2⋅1⋅3​+(3​)2:4−23​
12−2⋅1⋅3​+(3​)2
Apply rule 1a=112=1=1−2⋅1⋅3​+(3​)2
2⋅1⋅3​=23​
2⋅1⋅3​
Multiply the numbers: 2⋅1=2=23​
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=1−23​+3
Add the numbers: 1+3=4=4−23​
=4−23​
(1+3​)(1−3​)=−2
(1+3​)(1−3​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=1,b=3​=12−(3​)2
Simplify 12−(3​)2:−2
12−(3​)2
Apply rule 1a=112=1=1−(3​)2
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=1−3
Subtract the numbers: 1−3=−2=−2
=−2
=−24−23​​
Apply the fraction rule: −ba​=−ba​=−24−23​​
Cancel 24−23​​:2−3​
24−23​​
Factor 4−23​:2(2−3​)
4−23​
Rewrite as=2⋅2−23​
Factor out common term 2=2(2−3​)
=22(2−3​)​
Divide the numbers: 22​=1=2−3​
=−(2−3​)
Distribute parentheses=−(2)−(−3​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2+3​
tan(3x)=−2+3​
tan(3x)=−2+3​
tan(3x)=−2+3​
Apply trig inverse properties
tan(3x)=−2+3​
General solutions for tan(3x)=−2+3​tan(x)=−a⇒x=arctan(−a)+πn3x=arctan(−2+3​)+πn
3x=arctan(−2+3​)+πn
Solve 3x=arctan(−2+3​)+πn:x=3arctan(−2+3​)​+3πn​
3x=arctan(−2+3​)+πn
Divide both sides by 3
3x=arctan(−2+3​)+πn
Divide both sides by 333x​=3arctan(−2+3​)​+3πn​
Simplifyx=3arctan(−2+3​)​+3πn​
x=3arctan(−2+3​)​+3πn​
x=3arctan(−2+3​)​+3πn​
Show solutions in decimal formx=3−0.26179…​+3πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos^2(x)-2cos(x)=0sin(3x)cos(x)+cos(3x)sin(x)=12sin(x)cos(x)+2sin(x)-cos(x)-1=0sin(x)= 4/5 ,sin(180-x)-11cos(x)(22)-11sin(x)(8)=-250

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(3x-pi/6)=-cos(3x-pi/6) ?

    The general solution for sin(3x-pi/6)=-cos(3x-pi/6) is x=(-0.26179…)/3+(pin)/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024