Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sinh(x)=(sqrt(2))/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sinh(x)=22​​

Solution

x=ln(22​+6​​)
+1
Degrees
x=37.72806…∘
Solution steps
sinh(x)=22​​
Rewrite using trig identities
sinh(x)=22​​
Use the Hyperbolic identity: sinh(x)=2ex−e−x​2ex−e−x​=22​​
2ex−e−x​=22​​
2ex−e−x​=22​​:x=ln(22​+6​​)
2ex−e−x​=22​​
Apply exponent rules
2ex−e−x​=22​​
Apply exponent rule: anam​=am−n22​​=221​−12ex−e−x​=221​−1
21​−1=−21​
21​−1
Convert element to fraction: 1=21⋅2​=−21⋅2​+21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2−1⋅2+1​
−1⋅2+1=−1
−1⋅2+1
Multiply the numbers: 1⋅2=2=−2+1
Add/Subtract the numbers: −2+1=−1=−1
=2−1​
Apply the fraction rule: b−a​=−ba​=−21​
2ex−e−x​=2−21​
2ex−e−x​=2−21​
Multiply both sides by 22ex−e−x​⋅2=2−21​⋅2
Simplify 2−21​⋅2:2​
2−21​⋅2
Apply exponent rule: a−b=ab1​2−21​=2​1​=2⋅2​1​
Multiply fractions: a⋅cb​=ca⋅b​=2​1⋅2​
Multiply the numbers: 1⋅2=2=2​2​
Apply radical rule: 2​=221​=221​2​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=21−21​
Subtract the numbers: 1−21​=21​=221​
Apply radical rule: 221​=2​=2​
ex−e−x=2​
Apply exponent rules
ex−e−x=2​
Apply exponent rule: abc=(ab)ce−x=(ex)−1ex−(ex)−1=2​
ex−(ex)−1=2​
Rewrite the equation with ex=uu−(u)−1=2​
Solve u−u−1=2​:u=22​+6​​,u=22​−6​​
u−u−1=2​
Refineu−u1​=2​
Multiply both sides by u
u−u1​=2​
Multiply both sides by uuu−u1​u=2​u
Simplify
uu−u1​u=2​u
Simplify uu:u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
Simplify −u1​u:−1
−u1​u
Multiply fractions: a⋅cb​=ca⋅b​=−u1⋅u​
Cancel the common factor: u=−1
u2−1=2​u
u2−1=2​u
u2−1=2​u
Solve u2−1=2​u:u=22​+6​​,u=22​−6​​
u2−1=2​u
Move 2​uto the left side
u2−1=2​u
Subtract 2​u from both sidesu2−1−2​u=2​u−2​u
Simplifyu2−1−2​u=0
u2−1−2​u=0
Write in the standard form ax2+bx+c=0u2−2​u−1=0
Solve with the quadratic formula
u2−2​u−1=0
Quadratic Equation Formula:
For a=1,b=−2​,c=−1u1,2​=2⋅1−(−2​)±(−2​)2−4⋅1⋅(−1)​​
u1,2​=2⋅1−(−2​)±(−2​)2−4⋅1⋅(−1)​​
(−2​)2−4⋅1⋅(−1)​=6​
(−2​)2−4⋅1⋅(−1)​
Apply rule −(−a)=a=(−2​)2+4⋅1⋅1​
(−2​)2=2
(−2​)2
Apply exponent rule: (−a)n=an,if n is even(−2​)2=(2​)2=(2​)2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
4⋅1⋅1=4
4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=4
=2+4​
Add the numbers: 2+4=6=6​
u1,2​=2⋅1−(−2​)±6​​
Separate the solutionsu1​=2⋅1−(−2​)+6​​,u2​=2⋅1−(−2​)−6​​
u=2⋅1−(−2​)+6​​:22​+6​​
2⋅1−(−2​)+6​​
Apply rule −(−a)=a=2⋅12​+6​​
Multiply the numbers: 2⋅1=2=22​+6​​
u=2⋅1−(−2​)−6​​:22​−6​​
2⋅1−(−2​)−6​​
Apply rule −(−a)=a=2⋅12​−6​​
Multiply the numbers: 2⋅1=2=22​−6​​
The solutions to the quadratic equation are:u=22​+6​​,u=22​−6​​
u=22​+6​​,u=22​−6​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u−u−1 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=22​+6​​,u=22​−6​​
u=22​+6​​,u=22​−6​​
Substitute back u=ex,solve for x
Solve ex=22​+6​​:x=ln(22​+6​​)
ex=22​+6​​
Apply exponent rules
ex=22​+6​​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(22​+6​​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(22​+6​​)
x=ln(22​+6​​)
Solve ex=22​−6​​:No Solution for x∈R
ex=22​−6​​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=ln(22​+6​​)
x=ln(22​+6​​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-2sin(2x)sin(x)=sin(2x)sin(θ)-0.2cos(θ)=(6.25)/(9.8)3cos(θ)=8tan(θ)tan(θ/4)+sqrt(3)=08sin^3(x)-6sin(x)+1=0

Frequently Asked Questions (FAQ)

  • What is the general solution for sinh(x)=(sqrt(2))/2 ?

    The general solution for sinh(x)=(sqrt(2))/2 is x=ln((sqrt(2)+sqrt(6))/2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024