Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^4(x)=(cos^2(x))/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin4(x)=2cos2(x)​

Solution

x=43π​+2πn,x=45π​+2πn,x=4π​+2πn,x=47π​+2πn
+1
Degrees
x=135∘+360∘n,x=225∘+360∘n,x=45∘+360∘n,x=315∘+360∘n
Solution steps
sin4(x)=2cos2(x)​
Subtract 2cos2(x)​ from both sidessin4(x)−2cos2(x)​=0
Simplify sin4(x)−2cos2(x)​:22sin4(x)−cos2(x)​
sin4(x)−2cos2(x)​
Convert element to fraction: sin4(x)=2sin4(x)2​=2sin4(x)⋅2​−2cos2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2sin4(x)⋅2−cos2(x)​
22sin4(x)−cos2(x)​=0
g(x)f(x)​=0⇒f(x)=02sin4(x)−cos2(x)=0
Factor 2sin4(x)−cos2(x):(2​sin2(x)+cos(x))(2​sin2(x)−cos(x))
2sin4(x)−cos2(x)
Rewrite 2sin4(x)−cos2(x) as (2​sin2(x))2−cos2(x)
2sin4(x)−cos2(x)
Apply radical rule: a=(a​)22=(2​)2=(2​)2sin4(x)−cos2(x)
Apply exponent rule: abc=(ab)csin4(x)=(sin2(x))2=(2​)2(sin2(x))2−cos2(x)
Apply exponent rule: ambm=(ab)m(2​)2(sin2(x))2=(2​sin2(x))2=(2​sin2(x))2−cos2(x)
=(2​sin2(x))2−cos2(x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​sin2(x))2−cos2(x)=(2​sin2(x)+cos(x))(2​sin2(x)−cos(x))=(2​sin2(x)+cos(x))(2​sin2(x)−cos(x))
(2​sin2(x)+cos(x))(2​sin2(x)−cos(x))=0
Solving each part separately2​sin2(x)+cos(x)=0or2​sin2(x)−cos(x)=0
2​sin2(x)+cos(x)=0:x=43π​+2πn,x=45π​+2πn
2​sin2(x)+cos(x)=0
Rewrite using trig identities
cos(x)+sin2(x)2​
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=cos(x)+(1−cos2(x))2​
cos(x)+(1−cos2(x))2​=0
Solve by substitution
cos(x)+(1−cos2(x))2​=0
Let: cos(x)=uu+(1−u2)2​=0
u+(1−u2)2​=0:u=−22​​,u=2​
u+(1−u2)2​=0
Expand u+(1−u2)2​:u+2​−2​u2
u+(1−u2)2​
=u+2​(1−u2)
Expand 2​(1−u2):2​−2​u2
2​(1−u2)
Apply the distributive law: a(b−c)=ab−aca=2​,b=1,c=u2=2​⋅1−2​u2
=1⋅2​−2​u2
Multiply: 1⋅2​=2​=2​−2​u2
=u+2​−2​u2
u+2​−2​u2=0
Write in the standard form ax2+bx+c=0−2​u2+u+2​=0
Solve with the quadratic formula
−2​u2+u+2​=0
Quadratic Equation Formula:
For a=−2​,b=1,c=2​u1,2​=2(−2​)−1±12−4(−2​)2​​​
u1,2​=2(−2​)−1±12−4(−2​)2​​​
12−4(−2​)2​​=3
12−4(−2​)2​​
Apply rule 1a=112=1=1−42​(−2​)​
Apply rule −(−a)=a=1+42​2​​
42​2​=8
42​2​
Apply radical rule: a​a​=a2​2​=2=4⋅2
Multiply the numbers: 4⋅2=8=8
=1+8​
Add the numbers: 1+8=9=9​
Factor the number: 9=32=32​
Apply radical rule: 32​=3=3
u1,2​=2(−2​)−1±3​
Separate the solutionsu1​=2(−2​)−1+3​,u2​=2(−2​)−1−3​
u=2(−2​)−1+3​:−22​​
2(−2​)−1+3​
Remove parentheses: (−a)=−a=−22​−1+3​
Add/Subtract the numbers: −1+3=2=−22​2​
Apply the fraction rule: −ba​=−ba​=−22​2​
Divide the numbers: 22​=1=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
u=2(−2​)−1−3​:2​
2(−2​)−1−3​
Remove parentheses: (−a)=−a=−22​−1−3​
Subtract the numbers: −1−3=−4=−22​−4​
Apply the fraction rule: −b−a​=ba​=22​4​
Divide the numbers: 24​=2=2​2​
Apply radical rule: 2​=221​=221​2​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=21−21​
Subtract the numbers: 1−21​=21​=221​
Apply radical rule: 221​=2​=2​
The solutions to the quadratic equation are:u=−22​​,u=2​
Substitute back u=cos(x)cos(x)=−22​​,cos(x)=2​
cos(x)=−22​​,cos(x)=2​
cos(x)=−22​​:x=43π​+2πn,x=45π​+2πn
cos(x)=−22​​
General solutions for cos(x)=−22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=43π​+2πn,x=45π​+2πn
x=43π​+2πn,x=45π​+2πn
cos(x)=2​:No Solution
cos(x)=2​
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=43π​+2πn,x=45π​+2πn
2​sin2(x)−cos(x)=0:x=4π​+2πn,x=47π​+2πn
2​sin2(x)−cos(x)=0
Rewrite using trig identities
−cos(x)+sin2(x)2​
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−cos(x)+(1−cos2(x))2​
−cos(x)+(1−cos2(x))2​=0
Solve by substitution
−cos(x)+(1−cos2(x))2​=0
Let: cos(x)=u−u+(1−u2)2​=0
−u+(1−u2)2​=0:u=−2​,u=22​​
−u+(1−u2)2​=0
Expand −u+(1−u2)2​:−u+2​−2​u2
−u+(1−u2)2​
=−u+2​(1−u2)
Expand 2​(1−u2):2​−2​u2
2​(1−u2)
Apply the distributive law: a(b−c)=ab−aca=2​,b=1,c=u2=2​⋅1−2​u2
=1⋅2​−2​u2
Multiply: 1⋅2​=2​=2​−2​u2
=−u+2​−2​u2
−u+2​−2​u2=0
Write in the standard form ax2+bx+c=0−2​u2−u+2​=0
Solve with the quadratic formula
−2​u2−u+2​=0
Quadratic Equation Formula:
For a=−2​,b=−1,c=2​u1,2​=2(−2​)−(−1)±(−1)2−4(−2​)2​​​
u1,2​=2(−2​)−(−1)±(−1)2−4(−2​)2​​​
(−1)2−4(−2​)2​​=3
(−1)2−4(−2​)2​​
Apply rule −(−a)=a=(−1)2+42​2​​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
42​2​=8
42​2​
Apply radical rule: a​a​=a2​2​=2=4⋅2
Multiply the numbers: 4⋅2=8=8
=1+8​
Add the numbers: 1+8=9=9​
Factor the number: 9=32=32​
Apply radical rule: 32​=3=3
u1,2​=2(−2​)−(−1)±3​
Separate the solutionsu1​=2(−2​)−(−1)+3​,u2​=2(−2​)−(−1)−3​
u=2(−2​)−(−1)+3​:−2​
2(−2​)−(−1)+3​
Remove parentheses: (−a)=−a,−(−a)=a=−22​1+3​
Add the numbers: 1+3=4=−22​4​
Apply the fraction rule: −ba​=−ba​=−22​4​
Divide the numbers: 24​=2=2​2​
Apply radical rule: 2​=221​=221​2​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=21−21​
Subtract the numbers: 1−21​=21​=221​
Apply radical rule: 221​=2​=−2​
u=2(−2​)−(−1)−3​:22​​
2(−2​)−(−1)−3​
Remove parentheses: (−a)=−a,−(−a)=a=−22​1−3​
Subtract the numbers: 1−3=−2=−22​−2​
Apply the fraction rule: −b−a​=ba​=22​2​
Divide the numbers: 22​=1=2​1​
Rationalize 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
=22​​
The solutions to the quadratic equation are:u=−2​,u=22​​
Substitute back u=cos(x)cos(x)=−2​,cos(x)=22​​
cos(x)=−2​,cos(x)=22​​
cos(x)=−2​:No Solution
cos(x)=−2​
−1≤cos(x)≤1NoSolution
cos(x)=22​​:x=4π​+2πn,x=47π​+2πn
cos(x)=22​​
General solutions for cos(x)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=4π​+2πn,x=47π​+2πn
x=4π​+2πn,x=47π​+2πn
Combine all the solutionsx=4π​+2πn,x=47π​+2πn
Combine all the solutionsx=43π​+2πn,x=45π​+2πn,x=4π​+2πn,x=47π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sec(x)+tan(x)=1sec(x)=-2cos^2(x)-cos(x)=0sec(x)=sqrt(2)tan^2(θ)=-3/2 sec(θ)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024