Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

csc(x)+cot(x)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

csc(x)+cot(x)=1

Solution

x=2π​+2πn
+1
Degrees
x=90∘+360∘n
Solution steps
csc(x)+cot(x)=1
Subtract 1 from both sidescsc(x)+cot(x)−1=0
Express with sin, cossin(x)1​+sin(x)cos(x)​−1=0
Simplify sin(x)1​+sin(x)cos(x)​−1:sin(x)1+cos(x)−sin(x)​
sin(x)1​+sin(x)cos(x)​−1
Combine the fractions sin(x)1​+sin(x)cos(x)​:sin(x)1+cos(x)​
Apply rule ca​±cb​=ca±b​=sin(x)1+cos(x)​
=sin(x)cos(x)+1​−1
Convert element to fraction: 1=sin(x)1sin(x)​=sin(x)1+cos(x)​−sin(x)1⋅sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)1+cos(x)−1⋅sin(x)​
Multiply: 1⋅sin(x)=sin(x)=sin(x)1+cos(x)−sin(x)​
sin(x)1+cos(x)−sin(x)​=0
g(x)f(x)​=0⇒f(x)=01+cos(x)−sin(x)=0
Add sin(x) to both sides1+cos(x)=sin(x)
Square both sides(1+cos(x))2=sin2(x)
Subtract sin2(x) from both sides(1+cos(x))2−sin2(x)=0
Factor (1+cos(x))2−sin2(x):(1+cos(x)+sin(x))(1+cos(x)−sin(x))
(1+cos(x))2−sin2(x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(1+cos(x))2−sin2(x)=((1+cos(x))+sin(x))((1+cos(x))−sin(x))=((1+cos(x))+sin(x))((1+cos(x))−sin(x))
Refine=(cos(x)+sin(x)+1)(cos(x)−sin(x)+1)
(1+cos(x)+sin(x))(1+cos(x)−sin(x))=0
Solving each part separately1+cos(x)+sin(x)=0or1+cos(x)−sin(x)=0
1+cos(x)+sin(x)=0:x=2πn+π,x=2πn+23π​
1+cos(x)+sin(x)=0
Rewrite using trig identities
1+cos(x)+sin(x)
sin(x)+cos(x)=2​sin(x+4π​)
sin(x)+cos(x)
Rewrite as=2​(2​1​sin(x)+2​1​cos(x))
Use the following trivial identity: cos(4π​)=2​1​Use the following trivial identity: sin(4π​)=2​1​=2​(cos(4π​)sin(x)+sin(4π​)cos(x))
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=2​sin(x+4π​)
=1+2​sin(x+4π​)
1+2​sin(x+4π​)=0
Move 1to the right side
1+2​sin(x+4π​)=0
Subtract 1 from both sides1+2​sin(x+4π​)−1=0−1
Simplify2​sin(x+4π​)=−1
2​sin(x+4π​)=−1
Divide both sides by 2​
2​sin(x+4π​)=−1
Divide both sides by 2​2​2​sin(x+4π​)​=2​−1​
Simplify
2​2​sin(x+4π​)​=2​−1​
Simplify 2​2​sin(x+4π​)​:sin(x+4π​)
2​2​sin(x+4π​)​
Cancel the common factor: 2​=sin(x+4π​)
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
sin(x+4π​)=−22​​
sin(x+4π​)=−22​​
sin(x+4π​)=−22​​
General solutions for sin(x+4π​)=−22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x+4π​=45π​+2πn,x+4π​=47π​+2πn
x+4π​=45π​+2πn,x+4π​=47π​+2πn
Solve x+4π​=45π​+2πn:x=2πn+π
x+4π​=45π​+2πn
Move 4π​to the right side
x+4π​=45π​+2πn
Subtract 4π​ from both sidesx+4π​−4π​=45π​+2πn−4π​
Simplify
x+4π​−4π​=45π​+2πn−4π​
Simplify x+4π​−4π​:x
x+4π​−4π​
Add similar elements: 4π​−4π​=0
=x
Simplify 45π​+2πn−4π​:2πn+π
45π​+2πn−4π​
Group like terms=2πn−4π​+45π​
Combine the fractions −4π​+45π​:π
Apply rule ca​±cb​=ca±b​=4−π+5π​
Add similar elements: −π+5π=4π=44π​
Divide the numbers: 44​=1=π
=2πn+π
x=2πn+π
x=2πn+π
x=2πn+π
Solve x+4π​=47π​+2πn:x=2πn+23π​
x+4π​=47π​+2πn
Move 4π​to the right side
x+4π​=47π​+2πn
Subtract 4π​ from both sidesx+4π​−4π​=47π​+2πn−4π​
Simplify
x+4π​−4π​=47π​+2πn−4π​
Simplify x+4π​−4π​:x
x+4π​−4π​
Add similar elements: 4π​−4π​=0
=x
Simplify 47π​+2πn−4π​:2πn+23π​
47π​+2πn−4π​
Group like terms=2πn−4π​+47π​
Combine the fractions −4π​+47π​:23π​
Apply rule ca​±cb​=ca±b​=4−π+7π​
Add similar elements: −π+7π=6π=46π​
Cancel the common factor: 2=23π​
=2πn+23π​
x=2πn+23π​
x=2πn+23π​
x=2πn+23π​
x=2πn+π,x=2πn+23π​
1+cos(x)−sin(x)=0:x=2π​+2πn,x=π+2πn
1+cos(x)−sin(x)=0
Rewrite using trig identities
1+cos(x)−sin(x)
Use the following identity: sin(x)=cos(2π​−x)=1+cos(x)−cos(2π​−x)
Use the Sum to Product identity: cos(s)−cos(t)=−2sin(2s+t​)sin(2s−t​)=1−2sin(2x+2π​−x​)sin(2x−(2π​−x)​)
2sin(2x+2π​−x​)sin(2x−(2π​−x)​)=2​sin(44x−π​)
2sin(2x+2π​−x​)sin(2x−(2π​−x)​)
2x+2π​−x​=4π​
2x+2π​−x​
x+2π​−x=2π​
x+2π​−x
Group like terms=x−x+2π​
Add similar elements: x−x=0=2π​
=22π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π​
Multiply the numbers: 2⋅2=4=4π​
=2sin(4π​)sin(2x−(−x+2π​)​)
2x−(2π​−x)​=44x−π​
2x−(2π​−x)​
Expand x−(2π​−x):2x−2π​
x−(2π​−x)
−(2π​−x):−2π​+x
−(2π​−x)
Distribute parentheses=−(2π​)−(−x)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2π​+x
=x−2π​+x
Simplify x−2π​+x:2x−2π​
x−2π​+x
Group like terms=x+x−2π​
Add similar elements: x+x=2x=2x−2π​
=2x−2π​
=22x−2π​​
Join 2x−2π​:24x−π​
2x−2π​
Convert element to fraction: 2x=22x2​=22x⋅2​−2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22x⋅2−π​
Multiply the numbers: 2⋅2=4=24x−π​
=224x−π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅24x−π​
Multiply the numbers: 2⋅2=4=44x−π​
=2sin(4π​)sin(44x−π​)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=2⋅22​​sin(44x−π​)
Multiply fractions: a⋅cb​=ca⋅b​=22​⋅2sin(44x−π​)​
Cancel the common factor: 2=2​sin(44x−π​)
=1−2​sin(44x−π​)
1−2​sin(44x−π​)=0
Move 1to the right side
1−2​sin(44x−π​)=0
Subtract 1 from both sides1−2​sin(44x−π​)−1=0−1
Simplify−2​sin(44x−π​)=−1
−2​sin(44x−π​)=−1
Divide both sides by −2​
−2​sin(44x−π​)=−1
Divide both sides by −2​−2​−2​sin(44x−π​)​=−2​−1​
Simplify
−2​−2​sin(44x−π​)​=−2​−1​
Simplify −2​−2​sin(44x−π​)​:sin(44x−π​)
−2​−2​sin(44x−π​)​
Apply the fraction rule: −b−a​=ba​=2​2​sin(44x−π​)​
Cancel the common factor: 2​=sin(44x−π​)
Simplify −2​−1​:22​​
−2​−1​
Apply the fraction rule: −b−a​=ba​=2​1​
Rationalize 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
=22​​
sin(44x−π​)=22​​
sin(44x−π​)=22​​
sin(44x−π​)=22​​
General solutions for sin(44x−π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
44x−π​=4π​+2πn,44x−π​=43π​+2πn
44x−π​=4π​+2πn,44x−π​=43π​+2πn
Solve 44x−π​=4π​+2πn:x=2π​+2πn
44x−π​=4π​+2πn
Multiply both sides by 4
44x−π​=4π​+2πn
Multiply both sides by 444(4x−π)​=4⋅4π​+4⋅2πn
Simplify
44(4x−π)​=4⋅4π​+4⋅2πn
Simplify 44(4x−π)​:4x−π
44(4x−π)​
Divide the numbers: 44​=1=4x−π
Simplify 4⋅4π​+4⋅2πn:π+8πn
4⋅4π​+4⋅2πn
4⋅4π​=π
4⋅4π​
Multiply fractions: a⋅cb​=ca⋅b​=4π4​
Cancel the common factor: 4=π
4⋅2πn=8πn
4⋅2πn
Multiply the numbers: 4⋅2=8=8πn
=π+8πn
4x−π=π+8πn
4x−π=π+8πn
4x−π=π+8πn
Move πto the right side
4x−π=π+8πn
Add π to both sides4x−π+π=π+8πn+π
Simplify4x=2π+8πn
4x=2π+8πn
Divide both sides by 4
4x=2π+8πn
Divide both sides by 444x​=42π​+48πn​
Simplify
44x​=42π​+48πn​
Simplify 44x​:x
44x​
Divide the numbers: 44​=1=x
Simplify 42π​+48πn​:2π​+2πn
42π​+48πn​
Cancel 42π​:2π​
42π​
Cancel the common factor: 2=2π​
=2π​+48πn​
Divide the numbers: 48​=2=2π​+2πn
x=2π​+2πn
x=2π​+2πn
x=2π​+2πn
Solve 44x−π​=43π​+2πn:x=π+2πn
44x−π​=43π​+2πn
Multiply both sides by 4
44x−π​=43π​+2πn
Multiply both sides by 444(4x−π)​=4⋅43π​+4⋅2πn
Simplify
44(4x−π)​=4⋅43π​+4⋅2πn
Simplify 44(4x−π)​:4x−π
44(4x−π)​
Divide the numbers: 44​=1=4x−π
Simplify 4⋅43π​+4⋅2πn:3π+8πn
4⋅43π​+4⋅2πn
4⋅43π​=3π
4⋅43π​
Multiply fractions: a⋅cb​=ca⋅b​=43π4​
Cancel the common factor: 4=3π
4⋅2πn=8πn
4⋅2πn
Multiply the numbers: 4⋅2=8=8πn
=3π+8πn
4x−π=3π+8πn
4x−π=3π+8πn
4x−π=3π+8πn
Move πto the right side
4x−π=3π+8πn
Add π to both sides4x−π+π=3π+8πn+π
Simplify4x=4π+8πn
4x=4π+8πn
Divide both sides by 4
4x=4π+8πn
Divide both sides by 444x​=44π​+48πn​
Simplify
44x​=44π​+48πn​
Simplify 44x​:x
44x​
Divide the numbers: 44​=1=x
Simplify 44π​+48πn​:π+2πn
44π​+48πn​
Divide the numbers: 44​=1=π+48πn​
Divide the numbers: 48​=2=π+2πn
x=π+2πn
x=π+2πn
x=π+2πn
x=2π​+2πn,x=π+2πn
Combine all the solutionsx=2πn+π,x=2πn+23π​,x=2π​+2πn,x=π+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into csc(x)+cot(x)=1
Remove the ones that don't agree with the equation.
Check the solution 2πn+π:False
2πn+π
Plug in n=12π1+π
For csc(x)+cot(x)=1plug inx=2π1+πcsc(2π1+π)+cot(2π1+π)=1
Undefined
⇒False
Check the solution 2πn+23π​:False
2πn+23π​
Plug in n=12π1+23π​
For csc(x)+cot(x)=1plug inx=2π1+23π​csc(2π1+23π​)+cot(2π1+23π​)=1
Refine−1=1
⇒False
Check the solution 2π​+2πn:True
2π​+2πn
Plug in n=12π​+2π1
For csc(x)+cot(x)=1plug inx=2π​+2π1csc(2π​+2π1)+cot(2π​+2π1)=1
Refine1=1
⇒True
Check the solution π+2πn:False
π+2πn
Plug in n=1π+2π1
For csc(x)+cot(x)=1plug inx=π+2π1csc(π+2π1)+cot(π+2π1)=1
Undefined
⇒False
x=2π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin(x)+csc(x)=02sin(x)=sqrt(3)sin(x)+1=02cos^2(x)+sin(x)=1sec(x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for csc(x)+cot(x)=1 ?

    The general solution for csc(x)+cot(x)=1 is x= pi/2+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024