Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

6/(sin(36))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(36∘)6​

Solution

532​(5+5​)5−5​​​
+1
Decimal
10.20780…
Solution steps
sin(36∘)6​
Rewrite using trig identities:sin(36∘)=42​5−5​​​
sin(36∘)
Show that: cos(36∘)−sin(18∘)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Show that: cos(36∘)+sin(18∘)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Refine(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Substitute cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Refine(cos(36∘)+sin(18∘))2−41​=1
Add 41​ to both sides(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Refine(cos(36∘)+sin(18∘))2=45​
Take the square root of both sidescos(36∘)+sin(18∘)=±45​​
cos(36∘)cannot be negativesin(18∘)cannot be negativecos(36∘)+sin(18∘)=45​​
Add the following equationscos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Refinecos(36∘)=45​+1​
Square both sides(cos(36∘))2=(45​+1​)2
Use the following identity: sin2(x)=1−cos2(x)sin2(36∘)=1−cos2(36∘)
Substitute cos(36∘)=45​+1​sin2(36∘)=1−(45​+1​)2
Refinesin2(36∘)=85−5​​
Take the square root of both sidessin(36∘)=±85−5​​​
sin(36∘)cannot be negativesin(36∘)=85−5​​​
Refinesin(36∘)=225−5​​​​
=225−5​​​​
Simplify=42​5−5​​​
=42​5−5​​​6​
Simplify 42​5−5​​​6​:532​(5+5​)5−5​​​
42​5−5​​​6​
Apply the fraction rule: cb​a​=ba⋅c​=2​5−5​​6⋅4​
Multiply the numbers: 6⋅4=24=2​5−5​​24​
Factor 24:23⋅3
Factor 24=23⋅3
=2​5−5​​23⋅3​
Cancel 2​5−5​​23⋅3​:5−5​​3⋅225​​
2​5−5​​23⋅3​
Apply radical rule: 2​=221​=221​5−5​​23⋅3​
Apply exponent rule: xbxa​=xa−b221​23​=23−21​=5−5​​3⋅2−21​+3​
Subtract the numbers: 3−21​=25​=5−5​​3⋅225​​
=5−5​​3⋅225​​
225​=222​
225​
225​=22+21​=22+21​
Apply exponent rule: xa+b=xaxb=22⋅221​
Refine=222​
=5−5​​3⋅222​​
3⋅222​=122​
3⋅222​
22=4=3⋅42​
Multiply the numbers: 3⋅4=12=122​
=5−5​​122​​
Rationalize 5−5​​122​​:532​(5+5​)5−5​​​
5−5​​122​​
Multiply by the conjugate 5−5​​5−5​​​=5−5​​5−5​​122​5−5​​​
5−5​​5−5​​=5−5​
5−5​​5−5​​
Apply radical rule: a​a​=a5−5​​5−5​​=5−5​=5−5​
=5−5​122​5−5​​​
Multiply by the conjugate 5+5​5+5​​=(5−5​)(5+5​)122​5−5​​(5+5​)​
(5−5​)(5+5​)=20
(5−5​)(5+5​)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=5,b=5​=52−(5​)2
Simplify 52−(5​)2:20
52−(5​)2
52=25
52
52=25=25
(5​)2=5
(5​)2
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=25−5
Subtract the numbers: 25−5=20=20
=20
=20122​(5+5​)5−5​​​
Cancel the common factor: 4=532​(5+5​)5−5​​​
=532​(5+5​)5−5​​​
=532​(5+5​)5−5​​​

Popular Examples

cos^2(2pi)-2sin(2pi)2(pi/4)+sin(4(pi/4))sec(36.87)(5(9.81)sin(37)+20)/5csc(arccos(-4/7))

Frequently Asked Questions (FAQ)

  • What is the value of 6/(sin(36)) ?

    The value of 6/(sin(36)) is (3sqrt(2)(5+sqrt(5))sqrt(5-\sqrt{5)})/5
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024