Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cot(52.5)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cot(52.5∘)

Solution

15+66​−83​−102​15+66​−83​−102​​​
+1
Decimal
0.76732…
Solution steps
cot(52.5∘)
Rewrite using trig identities:tan(52.5∘)1​
cot(52.5∘)
Use the basic trigonometric identity: cot(x)=tan(x)1​=tan(52.5∘)1​
=tan(52.5∘)1​
Rewrite using trig identities:tan(52.5∘)=15+66​−83​−102​​
tan(52.5∘)
Rewrite using trig identities:1+cos(105∘)1−cos(105∘)​​
tan(52.5∘)
Write tan(52.5∘)as tan(2105∘​)=tan(2105∘​)
Use the Half Angle identity:tan(2θ​)=1+cos(θ)1−cos(θ)​​
Rewrite using trig identities:tan2(θ)=1+cos(2θ)1−cos(2θ)​
Use the following identity
tan(θ)=cos(θ)sin(θ)​
Square both sidestan2(θ)=cos2(θ)sin2(θ)​
Rewrite using trig identities:sin2(θ)=21−cos(2θ)​
Use the Double Angle identitycos(2θ)=1−2sin2(θ)
Switch sides2sin2(θ)−1=−cos(2θ)
Add 1 to both sides2sin2(θ)=1−cos(2θ)
Divide both sides by 2sin2(θ)=21−cos(2θ)​
Rewrite using trig identities:cos2(θ)=21+cos(2θ)​
Use the Double Angle identitycos(2θ)=2cos2(θ)−1
Switch sides2cos2(θ)−1=cos(2θ)
Add 1 to both sides2sin2(θ)=1+cos(2θ)
Divide both sides by 2cos2(θ)=21+cos(2θ)​
tan2(θ)=21+cos(2θ)​21−cos(2θ)​​
Simplifytan2(θ)=1+cos(2θ)1−cos(2θ)​
Substitute θ with 2θ​tan2(2θ​)=1+cos(2⋅2θ​)1−cos(2⋅2θ​)​
Simplifytan2(2θ​)=1+cos(θ)1−cos(θ)​
Square root both sides
Choose the root sign according to the quadrant of 2θ​:
range[0,90∘][90∘,180∘]​quadrantIII​tanpositivenegative​​
tan(2θ​)=1+cos(θ)1−cos(θ)​​
=1+cos(105∘)1−cos(105∘)​​
=1+cos(105∘)1−cos(105∘)​​
Rewrite using trig identities:cos(105∘)=42​(1−3​)​
cos(105∘)
Rewrite using trig identities:cos(60∘)cos(45∘)−sin(60∘)sin(45∘)
cos(105∘)
Write cos(105∘)as cos(60∘+45∘)=cos(60∘+45∘)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(60∘)cos(45∘)−sin(60∘)sin(45∘)
=cos(60∘)cos(45∘)−sin(60∘)sin(45∘)
Use the following trivial identity:cos(60∘)=21​
cos(60∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=21​
Use the following trivial identity:cos(45∘)=22​​
cos(45∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:sin(60∘)=23​​
sin(60∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
Use the following trivial identity:sin(45∘)=22​​
sin(45∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=21​⋅22​​−23​​⋅22​​
Simplify 21​⋅22​​−23​​⋅22​​:42​(1−3​)​
21​⋅22​​−23​​⋅22​​
Factor out common term 22​​=22​​(21​−23​​)
21​−23​​=21−3​​
21​−23​​
Apply rule ca​±cb​=ca±b​=21−3​​
=22​​⋅21−3​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅2(1−3​)2​​
Multiply the numbers: 2⋅2=4=42​(1−3​)​
=42​(1−3​)​
=1+42​(1−3​)​1−42​(1−3​)​​​
Simplify 1+42​(1−3​)​1−42​(1−3​)​​​:15+66​−83​−102​​
1+42​(1−3​)​1−42​(1−3​)​​​
1+42​(1−3​)​1−42​(1−3​)​​=4+2​(1−3​)4−2​(1−3​)​
1+42​(1−3​)​1−42​(1−3​)​​
Join 1+42​(1−3​)​:44+2​(1−3​)​
1+42​(1−3​)​
Convert element to fraction: 1=41⋅4​=41⋅4​+42​(1−3​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4+2​(1−3​)​
Multiply the numbers: 1⋅4=4=44+2​(1−3​)​
=44+2​(1−3​)​1−42​(1−3​)​​
Join 1−42​(1−3​)​:44−2​(1−3​)​
1−42​(1−3​)​
Convert element to fraction: 1=41⋅4​=41⋅4​−42​(1−3​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−2​(1−3​)​
Multiply the numbers: 1⋅4=4=44−2​(1−3​)​
=44+2​(1−3​)​44−2​(1−3​)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=4(4+2​(1−3​))(4−2​(1−3​))⋅4​
Cancel the common factor: 4=4+2​(1−3​)4−2​(1−3​)​
=4+2​(1−3​)4−2​(1−3​)​​
4+2​(1−3​)4−2​(1−3​)​=15+66​−83​−102​
4+2​(1−3​)4−2​(1−3​)​
Multiply by the conjugate 4−2​(1−3​)4−2​(1−3​)​=(4+2​(1−3​))(4−2​(1−3​))(4−2​(1−3​))(4−2​(1−3​))​
(4−2​(1−3​))(4−2​(1−3​))=24+86​−82​−43​
(4−2​(1−3​))(4−2​(1−3​))
Apply exponent rule: ab⋅ac=ab+c(4−2​(1−3​))(4−2​(1−3​))=(4−2​(1−3​))1+1=(4−2​(1−3​))1+1
Add the numbers: 1+1=2=(4−2​(1−3​))2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=4,b=2​(1−3​)
=42−2⋅42​(1−3​)+(2​(1−3​))2
Simplify 42−2⋅42​(1−3​)+(2​(1−3​))2:24+86​−82​−43​
42−2⋅42​(1−3​)+(2​(1−3​))2
42=16
42
42=16=16
2⋅42​(1−3​)=82​(1−3​)
2⋅42​(1−3​)
Multiply the numbers: 2⋅4=8=82​(1−3​)
(2​(1−3​))2=2(4−23​)
(2​(1−3​))2
Apply exponent rule: (a⋅b)n=anbn=(2​)2(1−3​)2
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2(1−3​)2
(1−3​)2=4−23​
(1−3​)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=1,b=3​
=12−2⋅1⋅3​+(3​)2
Simplify 12−2⋅1⋅3​+(3​)2:4−23​
12−2⋅1⋅3​+(3​)2
Apply rule 1a=112=1=1−2⋅1⋅3​+(3​)2
2⋅1⋅3​=23​
2⋅1⋅3​
Multiply the numbers: 2⋅1=2=23​
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=1−23​+3
Add the numbers: 1+3=4=4−23​
=4−23​
=2(4−23​)
=16−82​(1−3​)+2(4−23​)
Expand −82​(1−3​):−82​+86​
−82​(1−3​)
Apply the distributive law: a(b−c)=ab−aca=−82​,b=1,c=3​=−82​⋅1−(−82​)3​
Apply minus-plus rules−(−a)=a=−8⋅1⋅2​+82​3​
Simplify −8⋅1⋅2​+82​3​:−82​+86​
−8⋅1⋅2​+82​3​
8⋅1⋅2​=82​
8⋅1⋅2​
Multiply the numbers: 8⋅1=8=82​
82​3​=86​
82​3​
Apply radical rule: a​b​=a⋅b​2​3​=2⋅3​=82⋅3​
Multiply the numbers: 2⋅3=6=86​
=−82​+86​
=−82​+86​
=16−82​+86​+2(4−23​)
Expand 2(4−23​):8−43​
2(4−23​)
Apply the distributive law: a(b−c)=ab−aca=2,b=4,c=23​=2⋅4−2⋅23​
Simplify 2⋅4−2⋅23​:8−43​
2⋅4−2⋅23​
Multiply the numbers: 2⋅4=8=8−2⋅23​
Multiply the numbers: 2⋅2=4=8−43​
=8−43​
=16−82​+86​+8−43​
Add the numbers: 16+8=24=24+86​−82​−43​
=24+86​−82​−43​
(4+2​(1−3​))(4−2​(1−3​))=8+43​
(4+2​(1−3​))(4−2​(1−3​))
Expand 4+2​(1−3​):4+2​−6​
4+2​(1−3​)
Expand 2​(1−3​):2​−6​
2​(1−3​)
Apply the distributive law: a(b−c)=ab−aca=2​,b=1,c=3​=2​⋅1−2​3​
=1⋅2​−2​3​
Simplify 1⋅2​−2​3​:2​−6​
1⋅2​−2​3​
1⋅2​=2​
1⋅2​
Multiply: 1⋅2​=2​=2​
2​3​=6​
2​3​
Apply radical rule: a​b​=a⋅b​2​3​=2⋅3​=2⋅3​
Multiply the numbers: 2⋅3=6=6​
=2​−6​
=2​−6​
=4+2​−6​
=(4+2​−6​)(−2​(1−3​)+4)
Expand 4−2​(1−3​):4−2​+6​
4−2​(1−3​)
Expand −2​(1−3​):−2​+6​
−2​(1−3​)
Apply the distributive law: a(b−c)=ab−aca=−2​,b=1,c=3​=−2​⋅1−(−2​)3​
Apply minus-plus rules−(−a)=a=−1⋅2​+2​3​
Simplify −1⋅2​+2​3​:−2​+6​
−1⋅2​+2​3​
1⋅2​=2​
1⋅2​
Multiply: 1⋅2​=2​=2​
2​3​=6​
2​3​
Apply radical rule: a​b​=a⋅b​2​3​=2⋅3​=2⋅3​
Multiply the numbers: 2⋅3=6=6​
=−2​+6​
=−2​+6​
=4−2​+6​
=(4+2​−6​)(4+6​−2​)
Distribute parentheses=4⋅4+4(−2​)+46​+2​⋅4+2​(−2​)+2​6​+(−6​)⋅4+(−6​)(−2​)+(−6​)6​
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=4⋅4−42​+46​+42​−2​2​+2​6​−46​+6​2​−6​6​
Simplify 4⋅4−42​+46​+42​−2​2​+2​6​−46​+6​2​−6​6​:8+43​
4⋅4−42​+46​+42​−2​2​+2​6​−46​+6​2​−6​6​
Add similar elements: 2​6​+6​2​=26​2​=4⋅4−42​+46​+42​−2​2​+26​2​−46​−6​6​
Add similar elements: −42​+42​=0=4⋅4+46​−2​2​+26​2​−46​−6​6​
Add similar elements: 46​−46​=0=4⋅4−2​2​+26​2​−6​6​
4⋅4=16
4⋅4
Multiply the numbers: 4⋅4=16=16
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
26​2​=43​
26​2​
Apply exponent rule: ab⋅ac=ab+c22​=2⋅221​=21+21​=6​⋅21+21​
Factor integer 6=2⋅3=2⋅3​⋅21+21​
Apply radical rule: 2⋅3​=2​3​=2​3​⋅21+21​
Apply exponent rule: ab⋅ac=ab+c21+21​2​=221​⋅221​+1=21+21​+21​=21+21​+21​3​
21+21​+21​=22
21+21​+21​
Combine the fractions 21​+21​:1
Apply rule ca​±cb​=ca±b​=21+1​
Add the numbers: 1+1=2=22​
Apply rule aa​=1=1
=21+1
Add the numbers: 1+1=2=22
=223​
22=4=43​
6​6​=6
6​6​
Apply radical rule: a​a​=a6​6​=6=6
=16−2+43​−6
Subtract the numbers: 16−2−6=8=8+43​
=8+43​
=8+43​24+86​−82​−43​​
Factor 24+86​−82​−43​:4(6+26​−22​−3​)
24+86​−82​−43​
Rewrite as=4⋅6+4⋅26​−4⋅22​−43​
Factor out common term 4=4(6+26​−22​−3​)
=8+43​4(6+26​−22​−3​)​
Factor 8+43​:4(2+3​)
8+43​
Rewrite as=4⋅2+43​
Factor out common term 4=4(2+3​)
=4(2+3​)4(6+26​−22​−3​)​
Divide the numbers: 44​=1=(2+3​)6+26​−22​−3​​
Remove parentheses: (a)=a=2+3​6+26​−22​−3​​
Multiply by the conjugate 2−3​2−3​​=(2+3​)(2−3​)(6+26​−22​−3​)(2−3​)​
(6+26​−22​−3​)(2−3​)=15+66​−83​−102​
(6+26​−22​−3​)(2−3​)
Distribute parentheses=6⋅2+6(−3​)+26​⋅2+26​(−3​)+(−22​)⋅2+(−22​)(−3​)+(−3​)⋅2+(−3​)(−3​)
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=6⋅2−63​+2⋅26​−26​3​−2⋅22​+22​3​−23​+3​3​
Simplify 6⋅2−63​+2⋅26​−26​3​−2⋅22​+22​3​−23​+3​3​:15+66​−83​−102​
6⋅2−63​+2⋅26​−26​3​−2⋅22​+22​3​−23​+3​3​
Add similar elements: −63​−23​=−83​=6⋅2−83​+2⋅26​−26​3​−2⋅22​+22​3​+3​3​
6⋅2=12
6⋅2
Multiply the numbers: 6⋅2=12=12
2⋅26​=46​
2⋅26​
Multiply the numbers: 2⋅2=4=46​
26​3​=62​
26​3​
Factor integer 6=3⋅2=23⋅2​3​
Apply radical rule: 3⋅2​=3​2​=23​2​3​
Apply radical rule: a​a​=a3​3​=3=2⋅32​
Multiply the numbers: 2⋅3=6=62​
2⋅22​=42​
2⋅22​
Multiply the numbers: 2⋅2=4=42​
22​3​=26​
22​3​
Apply radical rule: a​b​=a⋅b​2​3​=2⋅3​=22⋅3​
Multiply the numbers: 2⋅3=6=26​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=12−83​+46​−62​−42​+26​+3
Add similar elements: −62​−42​=−102​=12−83​+46​−102​+26​+3
Add similar elements: 46​+26​=66​=12−83​+66​−102​+3
Add the numbers: 12+3=15=15+66​−83​−102​
=15+66​−83​−102​
(2+3​)(2−3​)=1
(2+3​)(2−3​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=2,b=3​=22−(3​)2
Simplify 22−(3​)2:1
22−(3​)2
22=4
22
22=4=4
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=4−3
Subtract the numbers: 4−3=1=1
=1
=115+66​−83​−102​​
Apply rule 1a​=a=15+66​−83​−102​
=15+66​−83​−102​​
=15+66​−83​−102​​
=15+66​−83​−102​​1​
Simplify 15+66​−83​−102​​1​:15+66​−83​−102​15+66​−83​−102​​​
15+66​−83​−102​​1​
Multiply by the conjugate 15+66​−83​−102​​15+66​−83​−102​​​=15+66​−83​−102​​15+66​−83​−102​​1⋅15+66​−83​−102​​​
1⋅15+66​−83​−102​​=15+66​−83​−102​​
15+66​−83​−102​​15+66​−83​−102​​=15+623​−83​−102​
15+66​−83​−102​​15+66​−83​−102​​
Apply radical rule: a​a​=a15+66​−83​−102​​15+66​−83​−102​​=15+66​−83​−102​=15+66​−83​−102​
66​=623​
66​
Apply exponent rule: ab⋅ac=ab+c66​=6⋅621​=61+21​=61+21​
Join 1+21​:23​
1+21​
Convert element to fraction: 1=21⋅2​=21⋅2​+21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=21⋅2+1​
1⋅2+1=3
1⋅2+1
Multiply the numbers: 1⋅2=2=2+1
Add the numbers: 2+1=3=3
=23​
=623​
=15+623​−83​−102​
=15+623​−83​−102​15+66​−83​−102​​​
623​=66​
623​
623​=61+21​=61+21​
Apply exponent rule: xa+b=xaxb=61⋅621​
Refine=66​
=15+66​−83​−102​15+66​−83​−102​​​
=15+66​−83​−102​15+66​−83​−102​​​

Popular Examples

cos^2(37)-sin^2(37)sin(arcsin((sqrt(3))/2)-arccos(0))5sin(4)sec(arcsin((2sqrt(5))/7))(14)/(tan(53))

Frequently Asked Questions (FAQ)

  • What is the value of cot(52.5) ?

    The value of cot(52.5) is (sqrt(15+6\sqrt{6)-8sqrt(3)-10sqrt(2)})/(15+6sqrt(6)-8\sqrt{3)-10sqrt(2)}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024