Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos((3pi)/4-(11pi)/6)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(43π​−611π​)

Solution

42​(−3​−1)​
+1
Decimal
−0.96592…
Solution steps
cos(43π​−611π​)
Simplify:43π​−611π​=−1213π​
43π​−611π​
Least Common Multiplier of 4,6:12
4,6
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 6=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 43π​:multiply the denominator and numerator by 343π​=4⋅33π3​=129π​
For 611π​:multiply the denominator and numerator by 2611π​=6⋅211π2​=1222π​
=129π​−1222π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=129π−22π​
Add similar elements: 9π−22π=−13π=12−13π​
Apply the fraction rule: b−a​=−ba​=−1213π​
=cos(−1213π​)
Use the following property: cos(−x)=cos(x)cos(−1213π​)=cos(1213π​)=cos(1213π​)
Rewrite using trig identities:cos(65π​)cos(4π​)−sin(65π​)sin(4π​)
cos(1213π​)
Write cos(1213π​)as cos(65π​+4π​)=cos(65π​+4π​)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(65π​)cos(4π​)−sin(65π​)sin(4π​)
=cos(65π​)cos(4π​)−sin(65π​)sin(4π​)
Use the following trivial identity:cos(65π​)=−23​​
cos(65π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−23​​
Use the following trivial identity:cos(4π​)=22​​
cos(4π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:sin(65π​)=21​
sin(65π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
Use the following trivial identity:sin(4π​)=22​​
sin(4π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=(−23​​)22​​−21​⋅22​​
Simplify (−23​​)22​​−21​⋅22​​:42​(−3​−1)​
(−23​​)22​​−21​⋅22​​
Remove parentheses: (−a)=−a=−23​​⋅22​​−21​⋅22​​
Factor out common term 22​​=22​​(−23​​−21​)
−23​​−21​=2−3​−1​
−23​​−21​
Apply rule ca​±cb​=ca±b​=2−3​−1​
=22​​⋅2−1−3​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅2(−3​−1)2​​
Multiply the numbers: 2⋅2=4=42​(−1−3​)​
=42​(−3​−1)​

Popular Examples

e^{-1}cos(1)(120)/(tan(19))(12)/(tan(53))cos(70)cos(25)+sin(70)sin(25)sin(2)(90)

Frequently Asked Questions (FAQ)

  • What is the value of cos((3pi)/4-(11pi)/6) ?

    The value of cos((3pi)/4-(11pi)/6) is (sqrt(2)(-sqrt(3)-1))/4
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024