Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Calculus >

integral from-1 to 1 of t*sin(npit)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

∫−11​t⋅sin(nπt)dt

Solution

−πn2(−1)n​
Solution steps
∫−11​tsin(nπt)dt
Apply Integration By Parts
=[−πn1​tcos(πnt)−∫−πn1​cos(πnt)dt]−11​
∫−πn1​cos(πnt)dt=−π2n21​sin(πnt)
=[−πn1​tcos(πnt)−(−π2n21​sin(πnt))]−11​
Simplify=[−πn1​tcos(πnt)+π2n21​sin(πnt)]−11​
Compute the boundaries:−(−1)nπn2​
=−(−1)nπn2​
Simplify=−πn2(−1)n​

Popular Examples

integral from 0 to pi/4 of e^xsin(x)integral from 2 to 10 of 1/48 xintegral from 0 to pi/2 of sec(x)-tan(x)integral from x to infinity of 5/(x^5)integral from 1.2 to 1.5 of 2/3-2/9 x

Frequently Asked Questions (FAQ)

  • What is the integral from-1 to 1 of t*sin(npit) ?

    The integral from-1 to 1 of t*sin(npit) is -(2(-1)^n)/(pin)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024